3.12.12 \(\int \frac {(d x)^m}{\sqrt {a+b x^2+c x^4}} \, dx\) [1112]

Optimal. Leaf size=157 \[ \frac {(d x)^{1+m} \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {1+m}{2};\frac {1}{2},\frac {1}{2};\frac {3+m}{2};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{d (1+m) \sqrt {a+b x^2+c x^4}} \]

[Out]

(d*x)^(1+m)*AppellF1(1/2+1/2*m,1/2,1/2,3/2+1/2*m,-2*c*x^2/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^2/(b+(-4*a*c+b^2)^(1/2
)))*(1+2*c*x^2/(b-(-4*a*c+b^2)^(1/2)))^(1/2)*(1+2*c*x^2/(b+(-4*a*c+b^2)^(1/2)))^(1/2)/d/(1+m)/(c*x^4+b*x^2+a)^
(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 157, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1155, 524} \begin {gather*} \frac {(d x)^{m+1} \sqrt {\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^2}{\sqrt {b^2-4 a c}+b}+1} F_1\left (\frac {m+1}{2};\frac {1}{2},\frac {1}{2};\frac {m+3}{2};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{d (m+1) \sqrt {a+b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(d*x)^m/Sqrt[a + b*x^2 + c*x^4],x]

[Out]

((d*x)^(1 + m)*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF
1[(1 + m)/2, 1/2, 1/2, (3 + m)/2, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])])/(d*
(1 + m)*Sqrt[a + b*x^2 + c*x^4])

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1155

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^2 +
 c*x^4)^FracPart[p]/((1 + 2*c*(x^2/(b + Rt[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^2/(b - Rt[b^2 - 4*a*c, 2
])))^FracPart[p])), Int[(d*x)^m*(1 + 2*c*(x^2/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2*c*(x^2/(b - Sqrt[b^2 - 4*a*c]
)))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]

Rubi steps

\begin {align*} \int \frac {(d x)^m}{\sqrt {a+b x^2+c x^4}} \, dx &=\frac {\left (\sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}\right ) \int \frac {(d x)^m}{\sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}}} \, dx}{\sqrt {a+b x^2+c x^4}}\\ &=\frac {(d x)^{1+m} \sqrt {1+\frac {2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {1+m}{2};\frac {1}{2},\frac {1}{2};\frac {3+m}{2};-\frac {2 c x^2}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}}\right )}{d (1+m) \sqrt {a+b x^2+c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.74, size = 181, normalized size = 1.15 \begin {gather*} \frac {x (d x)^m \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^2}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^2}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {1+m}{2};\frac {1}{2},\frac {1}{2};\frac {3+m}{2};-\frac {2 c x^2}{b+\sqrt {b^2-4 a c}},\frac {2 c x^2}{-b+\sqrt {b^2-4 a c}}\right )}{(1+m) \sqrt {a+b x^2+c x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^m/Sqrt[a + b*x^2 + c*x^4],x]

[Out]

(x*(d*x)^m*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x
^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[(1 + m)/2, 1/2, 1/2, (3 + m)/2, (-2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]), (2*c
*x^2)/(-b + Sqrt[b^2 - 4*a*c])])/((1 + m)*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {\left (d x \right )^{m}}{\sqrt {c \,x^{4}+b \,x^{2}+a}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m/(c*x^4+b*x^2+a)^(1/2),x)

[Out]

int((d*x)^m/(c*x^4+b*x^2+a)^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x)^m/sqrt(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral((d*x)^m/sqrt(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (d x\right )^{m}}{\sqrt {a + b x^{2} + c x^{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**m/(c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral((d*x)**m/sqrt(a + b*x**2 + c*x**4), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^m/(c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((d*x)^m/sqrt(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (d\,x\right )}^m}{\sqrt {c\,x^4+b\,x^2+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^m/(a + b*x^2 + c*x^4)^(1/2),x)

[Out]

int((d*x)^m/(a + b*x^2 + c*x^4)^(1/2), x)

________________________________________________________________________________________